
主讲教师：汪红松

数据结构
（C语言版）（第2版）

图

教 学 内 容

1

2

3

4

5

图的定义和基本术语

图的存储结构

图的遍历

图的应用(1)

图的应用(2)

Contents

老师
一、邻接矩阵
二、邻接表
三、十字链表——用于有向图
四、邻接多重表——用于无向图

图的存储结构

顺序存储
结构

数 组 表 示 法
（邻接矩阵）

链式存储
结构

多重链表
邻 接 矩 阵 (数
组)表示法

邻接表(链式)
表示法

重点介绍

邻接表
邻接多重表
十字链表



 


 ,

),(, ,
]][[.

否则

或者如果

0
><1

A
EjiEji

jiEdge

v邻接矩阵是表示顶点之间相邻关系的矩阵。

v设图 A = (V, E) 有 n 个顶点，则图的邻接矩阵是一个二维数

 组 A.Edge[n][n]，定义为：

一、邻接矩阵

邻接矩阵：
A.Edge =

（ v1 v2 v3 v4 v5 ）
v1
v2
v3
v4
v5

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

分析1：无向图的邻接矩阵是对称的；
分析2：顶点i 的度＝第 i 行 (列) 中1 的个数；
特别：完全图的邻接矩阵中，对角元素为0，其余1。

0 1 0 1 0
1 0 1 0 1
0 1 0 1 1
1 0 1 0 1
0 1 1 1 0

0 1 0 1 0
1 0 1 0 1
0 1 0 1 1
1 0 1 0 1
0 1 1 1 0

顶点表：
v1 v2

v3

v5v4v4

一、邻接矩阵

分析1：有向图的邻接矩阵可能
是不对称的。
分析2：顶点的出度=第i行元素
之和
 顶点的入度=第i列元素之和
 顶点的度=第i行元素之和+
第i列元素之和

v1 v2

v3 v4

A
邻接矩阵：

A.Edge =

(v1 v2 v3 v4)
v1
v2
v3
v4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

注：在有向图的邻接矩阵中，
 第i行含义：以结点vi为尾
的弧(即出度边）；
 第i列含义：以结点vi为头
的弧(即入度边）。

顶点表：
0 1 1 0
0 0 0 0
0 0 0 1
1 0 0 0

0 1 1 0
0 0 0 0
0 0 0 1
1 0 0 0

3.有向图的邻接矩阵表示法

一、邻接矩阵

1

3

定义为： A.Edge[i][j]=
Wij <vi, vj> 或（vi, vj）∈VR
∞ 无边（弧）

v1 v2

v3

v4

N

v5

v6

5
48

97

5

5

邻接矩阵：

N.Edge =

(v1 v2 v3 v4 v5 v6)顶点表：
∞ 5 ∞ 7 ∞ ∞
∞ ∞ 4 ∞ ∞ ∞
 8 ∞ ∞ ∞ ∞ 9
∞ ∞ 5 ∞ ∞ 6
∞ ∞ ∞ 5 ∞ ∞
 3 ∞ ∞ ∞ 1 ∞

6

一、邻接矩阵

容易实现图的操作，如：求
某顶点的度、判断顶点之间
是否有边、找顶点的邻接点
等等。

n个顶点需要n*n个单元存
储边;空间效率为O(n2)。 对
稀疏图而言尤其浪费空间。

缺点：优点：

一、邻接矩阵

//用两个数组分别存储顶点表和邻接矩阵
#define MaxInt 32767 //表示极大值，即∞
#define MVNum 100 //最大顶点数
typedef char VerTexType; //假设顶点的数据类型为字符型
typedef int ArcType; //假设边的权值类型为整型
typedef struct{
 VerTexType vexs[MVNum]; //顶点表
 ArcType arcs[MVNum][MVNum]; //邻接矩阵
 int vexnum,arcnum; //图的当前点数和边数
}AMGraph;

一、邻接矩阵

【算法思想】

4 5
A B C D
A B 500
A C 200
A D 150
B C 400
C D 600

输入总顶点数和总边数。

依次输入点的信息存入顶点表中。

初始化邻接矩阵，使每个权值初
始化为极大值。

构造邻接矩阵。

一、邻接矩阵

Status CreateUDN(AMGraph &G){
 //采用邻接矩阵表示法，创建无向网G
 cin>>G.vexnum>>G.arcnum; //输入总顶点数，总边数
 for(i = 0; i<G.vexnum; ++i)
 cin>>G.vexs[i]; //依次输入点的信息
 for(i = 0; i<G.vexnum;++i) //初始化邻接矩阵，边的权值均置为极大值
 for(j = 0; j<G.vexnum;++j)
 G.arcs[i][j] = MaxInt;
 for(k = 0; k<G.arcnum;++k){ //构造邻接矩阵
 cin>>v1>>v2>>w; //输入一条边依附的顶点及权值
 i = LocateVex(G, v1);
 j = LocateVex(G, v2); //确定v1和v2在G中的位置
 G.arcs[i][j] = w; //边<v1, v2>的权值置为w
 G.arcs[j][i] = G.arcs[i][j]; //置<v1, v2>的对称边<v2, v1>的权值为w
 }//for
 return OK;
}//CreateUDN

【算法描述】

4 5
A B C D
A B 500
A C 200
A D 150
B C 400
C D 600

v 对每个顶点vi 建立一个单链表，把与vi有关联的边的信息链接
起来，每个结点设为3个域；

v 每个单链表有一个头结点（设为2个域），存vi信息；

adjvex nextarc infodata firstarc
表结点头结点

邻接点域，
表示vi一个邻
接点的位置

链域，指向
vi下一个边
或弧的结点

数据域，与
边有关信息
（如权值）

数据域，
存储顶点vi
信息

链域，指向
单链表的第

一个结点

v 每个单链表的头结点另外用顺序存储结构存储。

1.邻接表（链式）表示法二、邻接表

0
1
2
3
4

^13

34 ^1

4 2 ^0

注：邻接表不唯一，因各个边结点的链入顺序是任意的。

v1

v2

v3

v4

v5 23 ^1

4 2 ^0

2.无向图的邻接表表示

空间效率为O(n+2e)。
若是稀疏图(e<<n2)，比邻接矩阵表示法O(n2)省空间。

TD(Vi)=单链表中链接的结点个数

v1 v2

v3

v5v4v4

二、邻接表

v1 v2

v3 v4 V4

V3

^V2

V1 2

^3

^0

^1

邻接表(出边)

V4
V3
V2
V1 ^3

^0
^2

^0

逆邻接表(入边)

3.有向图的邻接表表示

空间效率为O(n+e)

出度
入度
度：

OD(Vi)＝单链出边表中链接的结点数
ID(Vi)＝邻接点域为Vi的弧个数

 TD(Vi) = OD(Vi) + I D(Vi)

二、邻接表

#define MVNum 100 //最大顶点数
typedef struct ArcNode{ //边结点
 int adjvex; //该边所指向的顶点的位置
 struct ArcNode * nextarc; //指向下一条边的指针
 OtherInfo info; //和边相关的信息
}ArcNode;
typedef struct VNode{
 VerTexType data; //顶点信息
 ArcNode * firstarc; //指向第一条依附该顶点的边的指针
}VNode, AdjList[MVNum]; //AdjList表示邻接表类型
typedef struct{
 AdjList vertices; //邻接表
 int vexnum, arcnum; //图的当前顶点数和边数
}ALGraph;

4.邻接表的存储表示二、邻接表

【算法思想】

5.采用邻接表表示法创建无向网

输入总顶点
数和总边数。

创建邻接
表。

依次输入点的信息存
入顶点表中，使每个
表头结点的指针域初

始化为NULL。

二、邻接表

Status CreateUDG(ALGraph &G){

　//采用邻接表表示法，创建无向图G

　cin>>G.vexnum>>G.arcnum; //输入总顶点数，总边数

 for(i = 0; i<G.vexnum; ++i){ //输入各点，构造表头结点表

 cin>> G.vertices[i].data; //输入顶点值

 G.vertices[i].firstarc=NULL; //初始化表头结点的指针域为NULL

 }//for

【算法描述】

6.采用邻接表表示法创建无向网二、邻接表

for(k = 0; k<G.arcnum;++k){ //输入各边，构造邻接表
 cin>>v1>>v2; //输入一条边依附的两个顶点
 i = LocateVex(G, v1); j = LocateVex(G, v2);
 p1=new ArcNode; //生成一个新的边结点*p1
　 p1->adjvex=j; //邻接点序号为j
　 p1->nextarc= G.vertices[i].firstarc; G.vertices[i].firstarc=p1;
 //将新结点*p1插入顶点vi的边表头部
 p2=new ArcNode; //生成另一个对称的新的边结点*p2
　 p2->adjvex=i; //邻接点序号为i
　 p2->nextarc= G.vertices[j].firstarc; G.vertices[j].firstarc=p2;
 //将新结点*p2插入顶点vj的边表头部
 }//for
 return OK;
}//CreateUDG

6.采用邻接表表示法创建无向网二、邻接表

7.邻接表表示法的特点

优点：空间效率高，容易寻找顶点的邻接点；

判断两顶点间是否有边或弧，需搜索两结点对
应的单链表，没有邻接矩阵方便。

缺点：

二、邻接表

结点表中的结点的表示：

data：结点的数据域，保存结点的数据值。

firstin: 结点的指针域，给出自该结点出发的的第一条边的边结
点的地址。

firstout：结点的指针场，给出进入该结点的第一条边的 边结点
的地址。

data firstin firstout

三、十字链表——用于有向图

边结点表中的结点的表示：

info:边结点的数据域，保存边的权值等。

tailvex: 本条边的出发结点的地址。

headvex:本条边的终止结点的地址。

hlink:终止结点相同的边中的下一条边的地址。

tlink:出发结点相同的边 中的下一条边的地址。

info tailvex headvex hlink tlink

三、十字链表——用于有向图

三、十字链表——用于有向图

四、邻接多重表——用于无向图

边结点表中的结点的表示：

ivex: 本条边依附的一个结点的地址。

ilink: 依附于该结点（地址由ivex给出）的边中的下一条边的
的地址。

jvex: 本条边依附的另一个结点的地址。

jlink: 依附于该结点（地址由jvex给出）的边中的下一条边的
的地址。

info: 边结点的数据域，保存边的权值等。

mark:边结点的标志域，用于标识该条边是否被访问过。

mark ivex ilink jvex jlink info

结点表中的结点的表示：

data:结点的数据域，保存结点的数据值。

firstedge: 结点的指针域，给出自该结点出发的的第一条边
的边结点的地址。

data firstedge

四、邻接多重表——用于无向图

四、邻接多重表——用于无向图

小结

1. 用二维数组存储图顶点之间相邻关系的邻接矩阵。
2. 用单链表表示顶点之间邻接关系的邻接表。
3. 有向图的链式存储结构十字链表。
4. 无向图的链式存储结构邻接多重表。

